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Abstract—Solutions that allow the computation of arbitrary
operations over data securely in the cloud are currently im-
practical. The holy grail of cryptography, fully homomorphic
encryption, still requires minutes to compute a single operation.
In order to provide a practical solution, this paper proposes
taking a different approach to the problem of securely processing
data. FRagmenting Individual Bits (FRIBs), a scheme which
preserves user privacy by distributing bit fragments across many
locations, is presented. Privacy is maintained by each server
only receiving a small portion of the actual data, and solving
for the rest results in a vast number of possibilities. Functions
are defined with NAND logic gates, and are computed quickly
as the performance overhead is shifted from computation to
network latency. This paper details our proof of concept addition
algorithm which took 346ms to add two 32-bit values - paving
the way towards further improvements to get computations
completed under 100ms.

Index Terms—homomorphic encoding; secure processing; en-
cryption; distribution; data privacy; cloud computing;

I. INTRODUCTION

The necessity to process data securely has been been dis-

cussed for decades [1], and has become even more crucial with

our dependence on the cloud [2]. Services such as Dropbox [3]

encrypt users data and manage the keys themselves. But

malicious hackers may break the key management system,

and rogue employees of the cloud service can easily view the

data [4]. Dropbox was actually hosted on another third-party

cloud service provider [5], meaning two sets of employees

have potential access to user data.

On the other hand, privacy-focused storage companies such

as Mega Limited [6] ask end users to encrypt all data them-

selves before uploading it to the cloud, rendering it unreadable.

This guarantees strong security and privacy, but means that

the cloud service cannot provide much functionality. In order

to combine the features of Dropbox and Mega, we need to be

able to protect data, while retaining the ability to compute over

it. Fully homomorphic encryption [7] has been the proposed

solution to this problem for years now, however is yet to be

made practical. Performance figures in Section II show that it

still takes minutes for a single operation.

The FRagmenting Individual Bits (FRIBs) scheme, has

been designed to distribute each individual bit across many

service providers, while still allowing Negative-AND (NAND)

operations to be computed. We likened our proposed idea to

the New Zealand terminology of ‘fribs’, which are small pieces

of unwanted wool removed after shearing. If we say a “bit”

is the woollen fleece, then it cannot be recreated without all

the fribs and wool. Distributing the bit fragments can be seen

as exporting the fribs and wool to different locations, known

as fragment servers. Once exported, the bit fragments can be

processed securely, by building functions from NAND gates.

This is further described in Sections III, IV and V. The

implementation and practicality of FRIBs is presented in

Section VI, and shows a performance increase over fully

homomorphic encryption. FRIBs protects users data and pri-

vacy because each fragment server only gets a small portion

of the data. We further evaluate the security provided by

FRIBs in Section VII, and provide examples for additional

security in Section VIII. To show that FRIBs can be applied

to many different applications, we discuss a few use cases in

Section IX, comparing to the current state-of-the-art solution.

II. RELATED WORK

A. Homomorphic Encryption

Homomorphic encryption exists in 2 flavours: Partially

Homomorphic Encryption (PHE) and Fully Homomorphic En-

cryption (FHE). PHE supports a single operation, for example,

addition or multiplication. Where FHE can support many

operations computed over encrypted data.

Cryptographic schemes supporting single homomorphic

operations have been around since RSA was proposed

in 1978 [8]. For some applications, only one operation

is required, and in these cases PHE is an ideal solu-

tion [9][10][11][12]. However many applications need mul-

tiple operations, and must therefore use FHE.

FHE was only proven plausible by Gentry as late as

2009 [13], many years after PHE. Wang et. al. [14] showed

performance results of a revised FHE scheme by Gentry

and Halevi [15] in 2015 for the recrypt function. CPU and

GPU implementations took 17.8 seconds and 1.32 seconds

respectively, using a small dimension size of 2048 [14]. A

medium dimension size of 8192 took 96.3 seconds and 8.4

seconds for the same function [14].

Currently hardware implementations [16] of FHE schemes

cannot give practical processing times, so it will be difficult

to make this technology usable in the real world. Combined
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with the fact that quantum computing is making huge advance-

ments [17][18], having data protected by traditional encryption

schemes (for example RSA [8], Diffie-Hellman [19] and

elliptic curves [20]) may not be as feasible in the future as

it is today. Lattice-based encryption [13] could be a solution;

however, it will result in even larger key sizes than current

impractical FHE schemes.

B. Hardware Solutions

The state-of-the-art secure processor, AEGIS [21], was

designed to only reveal the data inside the processor. Therefore

any data leaving the processor is encrypted. This protects

against a range of software and physical attacks. But AEGIS

still has security vulnerabilities in the form of side-channel-

attacks [22][23]. This attack vector analyses information

“leaked” from the physical execution of a program, for exam-

ple power consumption [24] or electromagnetic radiation [25].

Other limitations of secure processors are the practicality of

deployment in the cloud. By definition, the cloud should be

flexible and adaptive, often viewed as abstracting services from

products [2], but by creating services reliant on custom hard-

ware, we lose the core essence of what the cloud should be.

C. Distribution

Cloud providers distribute their services for features like

lower latency, load-balancing, and redundancy [26][27]. Dis-

tribution can also provide better security and data protection by

distributing user data over many servers, for example splitting

database columns [28]. Then if a server is compromised,

only some of the data is lost. Some PHE schemes have

threshold variants which allow decryption to be split across

many servers [29], and have primarily been used for voting

schemes [30][9][12]. This provides extra protection to the

decryption key, as each server only possesses a part of it. This

is similar to encrypting data, as the time required to break

the encryption can be compared to time required to break into

all servers. Therefore distribution can enhance security, not

just give better performance, which is the traditional school

of thought.

D. Homomorphic Encoding

Encoding in general has been homomorphic for a while,

audio and video being only a few examples. However it has

not been readily explored for processing data securely. In 2015

we proposed Bin Encoding [31], a lossy encoding technique

for securely searching strings. This showed that encoding can

process data in a secure manner, while providing additional

functionality over the likes of homomorphic encryption. It can

also take advantage of the security given by distributing the

data across many service providers.

III. PROBLEM FORMULATION

Given how impractical FHE is currently, we have taken a

different approach to the concept of processing data securely.

Following on from our previous work [31], we propose encod-

ing and distributing data to different cloud service providers.

F0 F1 F2

Bob

Hash(F1) Hash(F2)Hash(F0)

Lookup

Table

Fragment
Servers

Reduction
Server

Fig. 1. System Model with 3 Fragment Servers and 1 Reduction Server.

A. System Model

Our scheme is aimed at all cloud users, personal and

enterprise. Figure 1 shows a typical use case for a personal

user. Bob is recording his health data (heart beat or sleep

patterns) collected from a activity tracker. He wants to store

this data in the cloud, but does not want his data shared with

third parties. Therefore Bob needs his data protected, but still

wants the ability to compute over the data, to find his average

sleep durations for example.

As the data is being uploaded, each bit is split into frag-

ments: F0, F1 and F2 in Figure 1. Each fragment is protected

using public-key encryption and sent to a seperate fragment

server managed by different cloud providers. When these

fragments are stored on the servers, they are encrypted using a

user unique key (managed by the cloud). Each fragment server

has less than 1/3 of the data (explained further in Section IV),

therefore Bob’s data is kept private.

Fragment servers can perform NAND operations, allowing

for arbitrary algorithms to be computed over Bob’s health

data. As operations are computed, the fragments will grow

in size. Then at a pre-determined stage, these fragments must

be reduced in size. The fragment servers apply a hash function

with a user defined salt value. The hash values are sent to a

reduction server, which has a lookup table previously uploaded

by Bob, as shown in Figure 1. The lookup table contains

encrypted fragments for each fragment server. Once a fragment

is reduced, more operations can be computed. Then Bob can be

securely sent all the result fragments to decode the result value.

B. Design Goals

The proposed scheme meets the following design goals.

• Support for all operations. We designed our scheme to

support many operations, including conditional functions,

by implementing a NAND gate.

• No single server can reveal the full data. To protect

privacy, each server should not be able to decode any

value (for example a 32-bit integer).

• Full cloud service. The scheme should be easy to

implement on current cloud infrastructure, for example
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Amazon AWS [32] or Microsoft Azure [33], and not

require any special hardware or equipment.

• Practical Performance. Our scheme should be usable,

allowing todays users of the cloud to be protected, while

still getting computational functionality.

C. Threat Model

The threat model against which we evaluate our method

is based on the following assumptions: 1) the communication

channel between each fragment server, the reduction server,

and the client is secure; 2) each server encrypts user data

before storing it to disk; 3) each fragment server has no

knowledge on other fragment servers, and 4) data is stored

across multiple cloud service providers.

Based on these assumptions, there are two types of attacker

to evaluate FRIBs against: a malicious insider, and a mali-

cious user/outsider. Both present similar threats, however a

malicious insider has an advantage because they already have

access to one cloud service providers system. If a malicious

insider manages to bypass all internal security, for example

access polices and permissions, then they can discover 1/(2N)
of the data. Now they become the same as any other malicious

user, as they can try to break into all the other cloud service

providers. The other option is to try and break the single

set of fragments. This summaries into two attack vectors:

breaking the data with one set of fragments, and getting all

the fragments from each system.

IV. FRAGMENTING INDIVIDUAL BITS

In the proposed scheme, data privacy is achieved by frag-

menting individual bits, where the fragments are spread across

many service providers and locations. Only when the frag-

ments are combined, can the bit value be decoded. This follows

the same principle of a Threshold cryptosystem [29], which

has N entities, but only requires t entities to decrypt a value

(where t < N ). Therefore if t entities are compromised, then

the encrypted data is no longer protected.

Given a value {0, 1} or {low, high}, the AND function is

used to encode/fragment the bit (why the AND function is used

instead of NAND is explained in Section V-B). An example is

shown in Table I where a value is encoded into two fragments.

A potential problem with this example is that 50% of the

fragments are 0. Assuming an equal probability (50 : 50)

between high and low bits before encoding, each servers can

solve ≈ 1/3 of the bit values (using the fact that 1/2 are low,

and 2/3s of the fragments are 0 for low values). Depending

on requirements this could be seen as too much information

leakage, even though complete values (32-bit integers or 8-bit

characters for example) are still unknown.

One technique to reduce the number of 0 fragments is to

introduce more fragment states. Table II gives an example of

three states for two servers, resulting in 1/3 of the fragments

equalling 0. The fragmentation used in Table II is F0 ∧ F1,

where the value 2 is low unless the other fragment is high. Now

each server can only solve ≈ 1/4 of the bit values. However

the easier solution is to increase the number of fragments, and

TABLE I
SIMPLE AND FRAGMENTATION.

Value F0 F1

low 0 0
low 1 0
low 0 1
high 1 1

TABLE II
FRAGMENTATION WITH MANY

STATES.

Value F0 F1

low 0 0
low 1 0
low 0 1
low 2 0
low 0 2
low 2 2
high 1 1
high 2 1
high 1 2

TABLE III
FRAGMENTATION WITH ONLY ONE SERVER RECEIVING 0.

Value F0 F1 F2 F3 F4

low 0 1 1 1 1
low 1 0 1 1 1
low 1 1 0 1 1
low 1 1 1 0 1
low 1 1 1 1 0
high 1 1 1 1 1

only allow one fragment to be 0 for an encoding, as shown in

Table III. This results in only 1/(N+1) fragments equalling 0,

where N is the number of fragments, and a server only having

knowledge of 1/(2N) of the bit values.

V. DISTRIBUTED NAND GATE

A. Operation

Now that the bits have been fragmented, we need to be

able to compute basic operations over them such as addition

and multiplication. Fragmenting values for either an addition

or multiplication is trivial. For example if we have two num-

bers, 12 and 10, we can fragment them into (6, 6) and (8, 2)
respectively. Adding the fragments together gives (14, 8),
which when joined together results in 22. Multiplication is

similar, with the fragments (3, 4) and (2, 5), multiplication

gives (6, 20), outputting 120. The challenge is being able to

compute both operations on the same set of data.

In order to compute many types of operations while only

implementing a single function, a universal logic gate is used.

FRIBs implements a NAND gate, as they are preferred over

NOR gates in electrical applications [34]. Unlike the addition

or multiplication example, the result of a NAND function is

dependant on the other fragments. Equation 1 compares the

Exclusive-OR (XOR) and NAND functions, where the NAND
function gives the wrong result. Therefore FRIBs maintains

state so that when joining the fragments together, the correct

result is given.

F0 F1 Result
A 0 ⊕ 0 0

⊕ ⊕ ⊕
B 1 ⊕ 1 0

1 ⊕ 1 0

F0 F1 Result
A 0 � 0 1

� � �
B 1 � 1 0

1 � 1 ?

(1)
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B. Maintaining State

To keep the states of each operation we use a simple

technique of concatenating each fragment together to be com-

puted/reduced later. The first operation with both fragments

of 1, will be concatenated to 11. If we continued concatenating

we would lose the order of NAND operations, as demonstrated

in Equations 2 and 3 where the same fragment values give

different results.

F0 F1 Result
A 11 ∧ 1 1

� � �
B 11 ∧ 1 1

1111 ∧ 11 0

F0 F1 Result
A 1111 ∧ 11 0

� � �
B 11 ∧ 1111 0

111111 ∧ 111111 1

(2)

F0 F1 Result
A 11 ∧ 11 0

� � �
B 1 ∧ 1 1

111 ∧ 111 1

F0 F1 Result
A 111 ∧ 111 1

� � �
B 111 ∧ 111 1

111111 ∧ 111111 0

(3)

Since anything NANDed with 0 results in 1, FRIBs uses 0 to

maintain order. This is why the fragmentation is currently done

with the AND function, so that if a server has a 0, it knows the

bit value is low. Equations 4 and 5 give the same examples as

in Equations 2 and 3, but now maintains order. Equation 4 now

gives the right fragment value of 11011011 instead of 111111,

which represents 11 � (11 � 11). But the left fragment value

of 110110011 has an extra 0, giving (11�11)�11 as the order

is different to the right side. The second example in Equation 5

is more straightforward, as both sides are the same.

F0 F1 Result
A 11 ∧ 1 1

� � �
B 11 ∧ 1 1

11011 ∧ 11 0

F0 F1 Result
A 11011 ∧ 11 0

� � �
B 11 ∧ 11011 0

110110011 ∧ 11011011 1

(4)

F0 F1 Result
A 11 ∧ 11 0

� � �
B 1 ∧ 1 1

1101 ∧ 1101 1

F0 F1 Result
A 1101 ∧ 1101 1

� � �
B 1101 ∧ 1101 1

1101001101 ∧ 1101001101 0

(5)

C. Reduction

Reducing the size of a fragment requires information about

all fragments. A seperate server, known as the reduction server,

is used where all N servers send their fragments to during the

reduction step. Once it has received each fragment, it uses a

lookup table to retrieve the reduced fragments for each server.

However if each fragment was sent to and returned from the

reduction server in the current format, then some of the data

can be decoded. The reduction servers have no knowledge of

the program being run over the data, meaning any bits they

can decode may still be worthless.

Since the reduction server is performing a simple lookup,

we can obfuscate each fragment state to a unique value.

For example, each server can hash the fragment with a

Ai

Bi

Ci

Oi

Ci+1

N1

N2

N3

N4 N5

N6

N7

N8

N9

Fig. 2. NAND Gate Full Adder

server unique salt value, or use a random mapping. Now the

reduction server cannot know the state of the fragments it has

received, but protecting the reduced fragments is slightly more

difficult. Instead of using a hash algorithm, we use public-

key encryption on each reduced fragment, such that only the

single server can decrypt the fragment. The lookup table is

built offline and sent to the reduction server. Therefore the

reduction server only receives a protected lookup table, and all

the reduced fragments are already encrypted. Another security

benefit given by this is that each public key for the individual

servers and their reduced fragments, can remain private. To

further improve privacy, multiple reduction servers can be used

were each one is used in a pseudo-random order.

With a maximum fragment size of 32-bits, it produces >
30000 entries per server. Using just two servers creates a very

large multi-key lookup table. Reducing the fragment size to

two sets of 16-bits for the lookup table, gives < 200 entries

per server. This makes implementation more practical as the

lookup table is now of a feasible size. With a maximum of <
200 entries per server, each key only requires 8-bits, which

can be increased by a few bits for better hashing. Splitting

a fragment into two 16-bit values must be done at the last

operation. For example, 110110011011000110110011011 will

become 110110011011 and 110110011011, allowing the same

lookup table to be used to get two obfuscated values. Another

lookup table can then get the encrypted values for each server

using the two obfuscated values.

By using the same lookup table many times, we can

increase the number of operations before the fragments need

to be reduced, if the fragments have the available space to

grow. Meaning that 110110011011 and 110110011011 can

become four 16-bit values 110110011011, 110110011011,

110110011011 and 110110011011. Given that more servers

lead to larger lookup tables, the size of the keys may need

to reduced even further. Finding the balance between number

of reductions and size of the fragments is important for

performance, as described in Section VI-D.

VI. IMPLEMENTATION AND PROVEN PRACTICALITY

A. Addition

The addition of two 32-bit integers can be achieved with

thirty one full-adders and a single half-adder. A full-adder

comprised of NAND gates can be seen in Figure 2. In order

to get the best performance for our proposed scheme, we

must reduce the number of network requests required by

combining many reductions requests into a single request. First

904904904904903



we compute all values for N4, which for worst-case where Ai

and Bi are both 1, gives 10111001101. The fragment therefore

can grow up to 10-bits during this step. We can then combine

all 32 fragments for N4 into a single network payload and

send them to be reduced to single bits.

How the carry bits are reduced can vary depending on

implementation, however we will allow the fragments to grow

as large as needed for this step. If a limitation is applied, more

reduction requests will be needed. Because the first bit does

not have an input carry value, N9 input is N1 and N1 (equates

to !N1). The other carry bits involve gates N1, N4, N5 and

N9, where the result from N9 is connected to the next bits N5

gate. Given that N4 will be a single bit, and that the worse

case value for N1 is 11, each carry step will at most add 5-

bits to the fragment (11010). We only need a single 0 between

each operation because we know the order is continuous. For

example if the carry output for the second bit is 1101011011,

we know the order of operations is (110(10(110(11)))).
This results in a worse-case fragment size of 155-bits (16×

10-bit values). We then send these carry-bit fragments to be

reduced, meaning we now have single bit values for all N4

and N9 gates. Allowing us to compute all N8 gates with a

maximum fragment size of 10-bits again. This only totals three

reduction requests.

B. Multiplication

Binary multiplication can be thought of as a series of AND
operations, all added together. Equation 6 shows an example

of multiplying 5 and 11 on an 8-bit machine. For each bit

in 11, we AND it with each bit in 5, giving 8 values. Adding

each value together, gives 55.

00000101

× 00001011

00000101

0000101

000000

00101

0000

000

00

+ 0

00110111

(6)

To make the additions more efficient, we add together the

biggest and next biggest values together, then the next pairing,

down to the smallest and second smallest. This is shown in

Equation 7.

00000101 0000 000000 00

+ 0000101 + 000 + 00101 + 0

00001111 0000 001010 00

(7)

We repeat this step in Equation 8.

00001111 0000

+ 001010 + 00

00110111 0000

(8)

And the final addition gives us the result in Equation 9.

00110111

+ 0000

00110111 ∴ = 00110111

(9)

This gives a total of 7 addition operations for this example.

But by adding similar sized numbers together in parallel,

we decrease the number of reduction steps required. For

Equation 7, each addition can combine the reduction requests

into one, meaning the performance is close to that of a single

addition. Therefore the performance of this example will be

slightly above 3 additions. For 32-bit values, there are a total

of 31 additions, but it performs like 5 additions.

C. Conditional

Supporting an operation to compare two values can dra-

matically affect the security of a secure processing scheme.

For example if a group of cipher values only encrypted the

set {0, 1}, then the ability to calculate if two cipher values are

equal will result in two subgroups of cipher values. Where

one subgroup must contain either encrypt a 0 or 1, and the

other subgroup must encrypt the opposite. However because

our proposed scheme has the bits fragmented across many

servers, all the servers must compute over the same instruction

set. This prevents a compromised sever trying to compare all

the fragments it has, as the other fragment servers would need

to be doing the same malicious action. Therefore our scheme

has the ability to support conditional operations, which can

be implemented to return the result in either a secure or non-

secure manner.

1) Secure Results: Returning results securely, means the

result is a fragmented bit, where < 1 fragment server has

knowledge of the result. This can make some programs

difficult to implement as the result of the comparison is not

known. Two examples are given in Algorithms 1 and 2, for

an equal and greater than or equal if statement. For both

examples, we have to increment c without knowing the result

of the comparison.

Algorithm 1 If Equals Example

1: if a = b then
2: c← c+ 1

3:

4: function IFEQUAL(a, b)
5: m← a− b
6: inout← 0
7: carry ← 0
8: for i← 0 to 32 do
9: tmp← m[i] + inout+ carry

10: inout← tmp & 1
11: carry ← tmp >> 1

12: return !(inout | carry)
13: c← c+ (1× ifEqual(a, b))
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0ms 350ms175ms

Fig. 3. Network latency experienced across 9 AWS datacenter locations.

Algorithm 2 If Greater Than or Equal Example

1: if a >= b then
2: c← c+ 1

3:

4: function IFGREATEREQUAL(a, b)
5: sign neq ← a[31]ˆb[31]
6: c← a− b
7: return (!sign neq & !c[31]) | (sign neq & !a[31])

8: c← c+ (1× ifGreaterEqual(a, b))

2) Non-Secure Results: Instead of returning a fragmented

bit, this approach returns the whole bit by using a different

lookup table than for a standard operation. This allows each

server to know the result of the conditional statement, making

programs easier to design and in some cases compute faster.

D. Performance

1) Network Latency: Because FRIBs relies heavily on

reduction requests, the locations of the fragment/reduction

servers affects performance. Figure 3 shows the average la-

tency (round trip time) experienced during testing on Ama-

zon AWS free-tier virtual machines in 9 locations: Vir-

ginia, California, Oregon, Ireland, Frankfurt, Singapore, Seoul,

Tokyo and Sydney. Locations near each other had good con-

nectivity, for example Singapore, Seoul and Tokyo, or Virginia,

California and Oregon. In this test, Sydney did not perform

well, with the best results over 100ms. This is something that

needs to be considered when choosing server locations, as

countries like Australia and New Zealand do not have the same

level of connectivity as other Asia-Pacific countries [35].

2) Addition: The cloud service providers used for this

experiment were Amazon Web Services, Microsoft Azure and

Google Cloud Platform. All instances were running with the

cheapest tier option, and based in the United States. The server

configuration was a single reduction sever and two fragment

servers. The reduction server was in California with Amazon,

a fragment server was also in California but with Microsoft,

and the final fragment server was in Iowa hosted by Google.

We used a proof-of-concept addition algorithm with a 27-

bit maximum fragment size which required 9 reductions, and

averaged 100 addition operations for 32-bit unsigned integers.

The latency at the time of testing was 3.106ms for Azure-

Amazon, and 37.414ms for Google-Amazon.

Our results produced an average of 346ms for each addition

operation. This is directionally proportional to the largest

latency time, where 37.414× 9 ≈ 346− (some small compu-

tation times). Therefore if all the fragment servers could be

within 10ms round trip from the reduction server, then addition

times could be 99.274ms. The latency figures of Azure to

Amazon could result in 37.228ms. Allowing for a larger frag-

ment size would also increase the performance. For example,

if only 5 reductions are required for an addition, then we can

nearly half the completion time. These performance numbers

are much faster than FHE schemes described in Section II-A.

3) Threading Issues: Each fragment server executes the

same instructions before a reduction is needed, and all the

fragments need to be received before the reduction server can

return the results. Ideally all the servers are running the users

thread at the same time. In reality, this cannot be guaranteed.

We tested starting 50 user threads on 2 fragment servers in

random order with a 10ms delay. Each user task computes 100

additions operations. Figure 4 shows 10% of the threads for

the first few addition operations. Each line represents the start

of an addition operation across both servers, where the color

represents a unique user task. The labeled thread starts early

on S1, but takes longer to start on S0. However the start of

the next 5 additions happen at nearly the same time on both

906906906906905



S0

S1

Start

Start

Fig. 4. Thread scheduling across 2 fragment servers for 50 randomly started user jobs.

servers. This happens as each thread must wait for the other

to reach the reduction stage. Therefore, the threads are able

to line up on both servers, where the thread counts on each

are similar.

VII. SECURITY EVALUATION

Given our threat model in Section III-C, there are two main

attack vectors we need to evaluate against: breaking the data

with one set of fragments, and getting all the fragments from

each system.

A. One set of Fragments

Successful attacks on traditional cryptography can often

decrypt all the data [36][37], but with our scheme each bit

fragment must be tried for each possibly. For example, we

have two fragment servers and the bit fragments (b0−7) for a

byte known to be an ASCII value in the range of 32 − 122.

Because we only know ≈ 1/4 of the bits, there are a number

of possibilities for the value. If we know b1 and b3 to be zero,

then we have 24 possibilities, of which 14 are letters. If we

increase the number of fragment servers to four, then we might

only know one bit. Setting only b3 or b1 to zero gives 48 or 46
possibilities respectively. Once we have hundreds of ASCII

fragments, forming sentences and paragraphs, the number of

possibilities are massive (14100 ≈ 4.1 × 10114). Therefore

privacy is preserved by the large amount of computation time

to generate and test all possibilities. Note, if an attacker

manages to break into more systems, then the number of

possibilities will decrease as more bits are known.

B. Breaking into all Systems

Any service implementing our scheme is ultimately respon-

sible for the security of their own environment. Software

patching, access polices and firewall management, to name

a few examples. However some exploits are out of a cloud

services control, for example a zero-day vulnerability in their

operating system. To reduce this risk, a mixture of Linux and

Microsoft servers can be used, such that any one vulnerability

cannot exploit every server. When a user/business is choos-

ing the service providers, they should also seek information

regarding security measures in place. A common approach is

looking at a list of standards the service is compliant with.

International standards are now emerging for cloud service

providers, with ISO/IEC 27018:2014 (with ISO/IEC 27002 as

one of its normative references) being the first International

code of practice that focuses on protection of Personally

Identifiable Information (PII) in the cloud. This increases

the security of their service, while providing more trust to

their users. The cryptography recommendations/requirements

described in ISO/IEC 27018:2014 are the objectives specified

in clause 10 of ISO/IEC 27002. Examples are provided for

use of cryptography in the cloud, but at a minimum a cloud

should implement controls for confidentiality (data encrypted

when stored or transmitted), and authentication. However there

is no mention of true secure processing, like homomorphic

encryption. To try and protect data being processed, access

controls are recommended. This makes it more difficult for

rogue employees or outside attackers to gain access to data

in-flight. Therefore by conforming with ISO/IEC 27018:2014

will reduce the chance of a breach, and applying our scheme

will enhance the security already provided.

End users also have control over their security, as the more

fragment and reduction servers used, the smaller the risk of

their data being compromised. Ten servers will give more

security over five, but the running costs increase. Therefore

evaluating against this attack vector is implementation de-

pendant. FRIBs can protect data from rogue employees and

malicious users who break into a few systems, but the cloud

service providers need to try protect the fragments they store

as well.

VIII. APPLYING EXTRA SECURITY LAYERS

A. Hardware Implementation

For users/businesses requiring even more security, and are

prepared to lose the flexibility of the cloud, hardware imple-

mentations are viable. A problem with secure processors like

AEGIS [21], is they are vulnerable to side-channel-attacks

as described in Section II-B. With non-secure values, if the

hardware server is compromised, the data is compromised.

However by having the bits themselves distributed, they only

get 1/(2N) of the data required to reveal the value. Building

a hardware server for our scheme would make the attacks

physical, and therefore more difficult, especially when they

are spread around the world.
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B. Public-Key Encryption

One way to further protect the fragmented data is to have

it encrypted. Note that when the data is in storage, the cloud

service provider should encrypt it as well. But the user also

has the ability to encrypt the data inside the fragments. For

example, a business needs to share data with its customers.

Each customer is sent fragments from each server in order to

decode the data. There are two methods for securely sending

the data to the customers. Each fragment server can encrypt

the actual fragments before sending them to the user, or the

data itself can be encrypted inside the fragments. The first

method requires each server to have the customers public key,

where the second method has the public key fragmented across

each server.

Having the ability to store public keys within fragments

gives them more protection. But it also means we can store

private/decryption keys in the cloud. For example, after some

data has been processed, it can encrypted within the fragments.

Then when the data is needed again, we can decrypt it.

This follows the same form of protection as described in

Section II-B for secure processors.

C. Homomorphic Encryption

Like public-key encryption, homomorphic encryption could

be applied within the fragments. This would allow encrypted

data to be processed, while being distributed. The performance

overhead of this would be large, if keys/dimensions are big.

However because the data is already protected, we could make

the keys/dimensions smaller.

IX. USE CASES AND COMPARISONS

A. Small to Medium Sized Businesses

Many companies, in particular smaller or new businesses

can benefit from the cloud, for example cost savings [38].

A problem emerges when personal customer data, or in

house private data is stored in the cloud. Customers have an

agreement with the company to store this information, but

not directly with the cloud service provider. Even though the

data would be visible to malicious employees of the cloud

service provider. These problems have stopped some business

from adopting the cloud, as they cannot guarantee the data

is protected.

Unfortunately having data 100% protected while in the

cloud is not currently possible. Even when meeting every

standard, having the correct polices in place, and using the

strongest encryption, someone, somewhere with the intent,

resources and time will break it. The best we can do is get

close to 100%. Like homomorphic encryption, FRIBs has the

flexibility to meet companies required security requirements.

However the stronger FRIBs becomes, by increasing the num-

ber of fragment and reduction servers, it still maintains similar

performance. Where with homomorphic encryption, as the

key/dimension size increases, so does the computation times.

B. Internet of Things: Low Energy and Low Powered Devices

The Internet is spreading to all of our devices, from kitchen

appliances, to autonomous cars and drones. Many of these

devices have very little computation power, and can often be

powered by a battery. The challenge is protecting the data

they collect and transmit. Traditional encryption techniques

are too inefficient, meaning security is often overlooked in

favour of functionality

Wireless sensor networks [39] are becoming widely de-

ployed [40] in commercial, military and personal environ-

ments. Schemes have been proposed to encrypt data [40][41]

efficiently on wireless sensor nodes, however the data must be

decrypted before any processing can be applied. Using FHE,

an Intel Core i7 3770K at 3.5GHz takes 1.08 seconds and 10.6
seconds for the encryption of a small and medium sized

dimension [14]. Where a sample sensor node using an Intel

StrongARM SA-1110 microprocessor, only has a frequency

of 59MHz to 206MHz [42] (relatively fast compared to other

sensor node processors). Combined with other architecture

differences, like data-path and caches sizes, the sensor node

cannot encrypt using a FHE scheme in feasible time. Where

FRIBs requires very little effort to fragment bits, and can

utilise existing encryption schemes [40][41] built for sensor

networks to send the fragments. This also reduces the amount

of data the nodes have to send, as FHE can produce large

cipher-values.

X. CONCLUSION

This paper has described FRIBs, a novel scheme to compute

arbitrary operations in the cloud while preserving user privacy.

Using a different methodology to state-of-the-art solutions,

individual bits are fragmented and spread across different

cloud service providers, rendering the values incomprehen-

sible. FRIBs follows the idea of “hiding in the masses”, as

proposed in [31], where each bit fragment has a large number

of possibilities.

One future possibility for FRIBs is to use a different tech-

nique for fragmenting the bits. This is to prevent 1/(2N) of

the data being visible to each fragment server. We would also

like to conduct a more in-depth security analysis of FRIBs,

for example observing patterns of hashes received by the

reduction server. Others include looking into secure instruc-

tion sets, improving the multiplication approach, supporting

dynamic memory lookups and more conditional statements.

Combined with increasing performance, a distributed secure

virtual processor becomes plausible.

FRIBs computes operations in a fraction of the time as

the holy grail of cryptography (i.e. fully homomorphic en-

cryption), reducing processing time from hours to seconds.

This is achieved by shifting the overhead from computation,

to network latency between each fragment server and the

reduction server/s. By allowing for varying performance and

security, users can now take control of their data in the cloud.
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